skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yao, Jewelia K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Human visual cortex contains regions selectively involved in perceiving and recognizing ecologically important visual stimuli such as people and places. Located in the ventral temporal lobe, these regions are organized consistently relative to cortical folding, a phenomenon thought to be inherited from how centrally or peripherally these stimuli are viewed with the retina. While this eccentricity theory of visual cortex has been one of the best descriptions of its functional organization, whether or not it accurately describes visual processing in all category-selective regions is not yet clear. Through a combination of behavioral and functional MRI measurements in 27 participants (17 females), we demonstrate that a limb-selective region neighboring well-studied face-selective regions shows tuning for the visual periphery in a cortical region originally thought to be centrally biased. We demonstrate that the spatial computations performed by the limb-selective region are consistent with visual experience and in doing so, make the novel observation that there may in fact be two eccentricity gradients, forming an eccentricity reversal across high-level visual cortex. These data expand the current theory of cortical organization to provide a unifying principle that explains the broad functional features of many visual regions, showing that viewing experience interacts with innate wiring principles to drive the location of cortical specialization. 
    more » « less
    Free, publicly-accessible full text available January 8, 2026
  2. Abstract The relationship between structural variability in late-developing association cortices like the lateral prefrontal cortex (LPFC) and the development of higher-order cognitive skills is not well understood. Recent findings show that the morphology of LPFC sulci predicts reasoning performance; this work led to the observation of substantial individual variability in the morphology of one of these sulci, the para-intermediate frontal sulcus (pimfs). Here, we sought to characterize this variability and assess its behavioral significance. To this end, we identified the pimfs in a developmental cohort of 72 participants, ages 6–18. Subsequent analyses revealed that the presence or absence of the ventral component of the pimfs was associated with reasoning, even when controlling for age. This finding shows that the cortex lining the banks of sulci can support the development of complex cognitive abilities and highlights the importance of considering individual differences in local morphology when exploring the neurodevelopmental basis of cognition. 
    more » « less
  3. Abstract The neuroanatomical changes that underpin cognitive development are of major interest in neuroscience. Of the many aspects of neuroanatomy to consider, tertiary sulci are particularly attractive as they emerge last in gestation, show a protracted development after birth, and are either human- or hominoid-specific. Thus, they are ideal targets for exploring morphological-cognitive relationships with cognitive skills that also show protracted development such as working memory (WM). Yet, the relationship between sulcal morphology and WM is unknown—either in development or more generally. To fill this gap, we adopted a data-driven approach with cross-validation to examine the relationship between sulcal depth in lateral prefrontal cortex (LPFC) and verbal WM in 60 children and adolescents between ages 6 and 18. These analyses identified 9 left, and no right, LPFC sulci (of which 7 were tertiary) whose depth predicted verbal WM performance above and beyond the effect of age. Most of these sulci are located within and around contours of previously proposed functional parcellations of LPFC. This sulcal depth model outperformed models with age or cortical thickness. Together, these findings build empirical support for a classic theory that tertiary sulci serve as landmarks in association cortices that contribute to late-maturing human cognitive abilities. 
    more » « less